What is the Cartesian form of (-24,(17pi)/6))?

1 Answer

Cartesian Form (12 sqrt(3), -12)

Explanation:

Given Polar Form (r, theta)=(-24, 17 pi/6)
Where r=-24 and theta=(17 pi)/6
x=r *cos theta
x=-24*cos ((17 pi)/6)

x=-24*(-sqrt(3)/2)

x=12 sqrt(3)

y=r*sin theta

y=-24 *sin((17 pi)/6)

y= -24*(1/2)
y=-12

therefore
(x, y)=(12 sqrt(3), -12)