What is the Cartesian form of ( 3 , (-9pi)/4 ) ?

1 Answer
Nov 20, 2016

The cartesian coordinates are ((3sqrt2)/2,(-3sqrt2)/2)

Explanation:

To convert from polar coordinates (r,theta) to cartesian coordinates (x,y), we use the following equations

x=rcostheta

and y=rsintheta

Here (r,theta)=(3,-9pi/4)

Therefore,

x=3cos((-9pi)/4)=3cos (-2pi-pi/4)=3cos(-pi/4)

x=3cos(pi/4)=(3sqrt2)/2

y=3sin((-9pi)/4)=3sin(-2pi-pi/4)=3sin(-pi/4)

y=3*-sqrt2/2=(-3sqrt2)/2

The cartesian coordinates are ((3sqrt2)/2,(-3sqrt2)/2)