What is the Cartesian form of (36,(-pi)/16))(36,−π16))?
1 Answer
= (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))=(18√2+√2+√2,−18√2−√2+√2)
Explanation:
To convert from polar to rectangular coordinates use:
{ (x = rcos theta), (y = rsin theta) :}
First let's find algebraic expressions for
Use:
sin(pi/4) = cos(pi/4) = sqrt(2)/2
sin^2 theta + cos^2 theta = 1
cos(2theta) = cos^2 theta - sin^2 theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta
sin(-theta) = -sin(theta)
cos(-theta) = cos(theta)
From
cos theta = +-sqrt((cos 2theta + 1)/2) = +-1/2sqrt(2+2cos2theta)
From
sin theta = +-sqrt((1-cos 2theta)/2) = +-1/2sqrt(2-2cos2theta)
Since
sin (pi/16) = 1/2sqrt(2-2cos(pi/8))
color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+2cos(pi/4)))
color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+sqrt(2)))
cos (pi/16) = 1/2sqrt(2+2cos(pi/8))
color(white)(cos(pi/16)) = 1/2sqrt(2+sqrt(2+sqrt(2)))
So:
sin(-pi/16) = -sin(pi/16) = -1/2sqrt(2-sqrt(2+sqrt(2)))
cos(-pi/16) = cos(pi/16) = 1/2sqrt(2+sqrt(2+sqrt(2)))
So with
(x, y) = (rcostheta, rsintheta)
color(white)((x, y)) = (36(1/2sqrt(2+sqrt(2+sqrt(2)))), 36(-1/2sqrt(2-sqrt(2+sqrt(2)))))
color(white)((x, y)) = (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))