What is the Cartesian form of (36,(-pi)/16))(36,π16))?

1 Answer
Sep 22, 2017

(x, y) = (rcostheta, rsintheta)(x,y)=(rcosθ,rsinθ)

= (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))=(182+2+2,1822+2)

Explanation:

To convert from polar to rectangular coordinates use:

{ (x = rcos theta), (y = rsin theta) :}

First let's find algebraic expressions for sin(pi/16) and cos(pi/16)

Use:

sin(pi/4) = cos(pi/4) = sqrt(2)/2

sin^2 theta + cos^2 theta = 1

cos(2theta) = cos^2 theta - sin^2 theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta

sin(-theta) = -sin(theta)

cos(-theta) = cos(theta)

From cos2theta = 2cos^2 theta - 1 we can deduce:

cos theta = +-sqrt((cos 2theta + 1)/2) = +-1/2sqrt(2+2cos2theta)

From cos2theta = 1 - 2sin^2 theta we can deduce:

sin theta = +-sqrt((1-cos 2theta)/2) = +-1/2sqrt(2-2cos2theta)

Since pi/8 and pi/16 are both in Q1, we know that sin and cos are both positive, so we can use the positive square root each time to find:

sin (pi/16) = 1/2sqrt(2-2cos(pi/8))

color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+2cos(pi/4)))

color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+sqrt(2)))

cos (pi/16) = 1/2sqrt(2+2cos(pi/8))

color(white)(cos(pi/16)) = 1/2sqrt(2+sqrt(2+sqrt(2)))

So:

sin(-pi/16) = -sin(pi/16) = -1/2sqrt(2-sqrt(2+sqrt(2)))

cos(-pi/16) = cos(pi/16) = 1/2sqrt(2+sqrt(2+sqrt(2)))

So with r=36 and theta = -pi/16 we find:

(x, y) = (rcostheta, rsintheta)

color(white)((x, y)) = (36(1/2sqrt(2+sqrt(2+sqrt(2)))), 36(-1/2sqrt(2-sqrt(2+sqrt(2)))))

color(white)((x, y)) = (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))