What is the Cartesian form of (45,(-13pi)/8)?
1 Answer
Explanation:
The cartesian form of
Let's find
Note that
Hence:
{ (cos(-(13pi)/4) = -sqrt(2)/2), (sin(-(13pi)/4) = sqrt(2)/2) :}
Then note that:
cos 2theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta
Hence:
cos(-(13pi)/8) = +-sqrt((1+cos(-(13pi)/4))/2)
color(white)(cos(-(13pi)/8)) = +-1/2sqrt(2+2cos(-(13pi)/4))
color(white)(cos(-(13pi)/8)) = +-1/2sqrt(2-sqrt(2))
sin(-(13pi)/8) = +-sqrt((1-cos(-(13pi)/4))/2)
color(white)(sin(-(13pi)/8)) = +-1/2sqrt(2-2cos(-(13pi)/4))
color(white)(sin(-(13pi)/8)) = +-1/2sqrt(2+sqrt(2))
Which signs are correct?
Note that
So
{ (cos(-(13pi)/8) = 1/2sqrt(2-sqrt(2))), (sin(-(13pi)/8) = 1/2sqrt(2+sqrt(2))) :}
So polar coordinates
(45 cos(-(13pi)/8), 45 sin(-(13pi)/8))=(45/2sqrt(2-sqrt(2)), 45/2sqrt(2+sqrt(2)))