What is the Cartesian form of #(5,(3pi )/2)#?

2 Answers
Dec 23, 2017

The cartesian point is #(0,-5)#.

Explanation:

#x=rcos(theta)# and #y=rsin(theta)# and for the given point #r=5# and #theta=(3pi)/2#.

#x=5cos((3pi)/2)=5*0=0#
#y=5sin((3pi)/2)=5*(-1)=-5#

So the cartesian point is #(0,-5)#.

Dec 23, 2017

#(0,-5)#

Explanation:

#"to convert from "color(blue)"polar to cartesian form"#

#"that is "(r,theta)to(x,y)" where"#

#•color(white)(x)x=rcostheta" and "y=rsintheta#

#"here "r=5" and "theta=(3pi)/2#

#rArrx=5xxcos((3pi)/2)=5xx0=0#

#rArry=5xxsin((3pi)/2)=5xx-1=-5#

#rArr(5,(3pi)/2)to(0,-5)#