What is the Cartesian form of ( 6 , ( 9pi)/4 ) ?
1 Answer
Oct 18, 2016
Explanation:
To convert from
color(blue)"polar to cartesian form" That is
(r,theta)to(x,y)
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(x=rcostheta , y=rsintheta)color(white)(2/2)|))) here r = 6 and
theta=(9pi)/4
rArrx=6cos((9pi)/4)=6cos((9pi)/4-2pi)
=6cos(pi/4)=6xx1/sqrt2=(6sqrt2)/2=3sqrt2 and
y=6sin((9pi)/4)=6sin((9pi)/4-2pi)
=6sin(pi/4)=6xx1/sqrt2=3sqrt2
rArr(6,(9pi)/4)to(3sqrt2,3sqrt2)