What is the Cartesian form of (-64,(5pi)/12)(−64,5π12)?
1 Answer
I got
Since you have two coordinates,
(If you had three coordinates, you would have to specify spherical or cylindrical coordinates.)
In polar coordinates, recall that
x = rcosthetax=rcosθ ,y = rsinthetay=rsinθ .
Therefore, you input the values of
color(blue)("("x)(x color(blue)(,), color(blue)(y")")y)
= (rcostheta,rsintheta)=(rcosθ,rsinθ)
= (-64cos((5pi)/12),-64sin((5pi)/12))=(−64cos(5π12),−64sin(5π12))
= (-64cos(75^@),-64sin(75^@))=(−64cos(75∘),−64sin(75∘))
Now we can use the additive angle formulas
sin(u+v) = sinusinv + cosucosvsin(u+v)=sinusinv+cosucosv ,
cos(u+v) = cosucosv - sinusinvcos(u+v)=cosucosv−sinusinv ,
to get
= (-64cos(30^@+45^@),-64sin(30^@+45^@))=(−64cos(30∘+45∘),−64sin(30∘+45∘))
= (-64(cos30^@cos45^@ - sin30^@sin45^@),-64(sin30^@cos45^@ + cos30^@sin45^@))=(−64(cos30∘cos45∘−sin30∘sin45∘),−64(sin30∘cos45∘+cos30∘sin45∘))
= (-64(sqrt3/2*sqrt2/2 - 1/2*sqrt2/2),-64(1/2*sqrt2/2 + sqrt3/2*sqrt2/2))=(−64(√32⋅√22−12⋅√22),−64(12⋅√22+√32⋅√22))
= (-64(sqrt6/4 - sqrt2/4),-64(sqrt2/4 + sqrt6/4))=(−64(√64−√24),−64(√24+√64))
= (-64((sqrt6-sqrt2)/4),-64((sqrt6+sqrt2)/4))=(−64(√6−√24),−64(√6+√24))
= (-16(sqrt6-sqrt2),-16(sqrt6+sqrt2))=(−16(√6−√2),−16(√6+√2))
= color(blue)((-16sqrt6 + 16sqrt2","-16sqrt6 - 16sqrt2))=(−16√6+16√2,−16√6−16√2) .