What is the Cartesian form of (66,(-31pi)/16))(66,31π16))?

1 Answer
Jul 9, 2018

color(magenta)("Cartesian form " x = 64.73, y = 12.88Cartesian form x=64.73,y=12.88

Explanation:

![www.nabla.hr)

"Given " r = 66, theta = (-(31pi)/16)^c, (" I Quadrant")Given r=66,θ=(31π16)c,( I Quadrant)

color(magenta)(x =) r cos theta = 66 * cos ((-31pi)/16) ~~ color(magenta)(64.73x=rcosθ=66cos(31π16)64.73

color(magenta)(y =) r sin theta = 66 * sin ((-31pi)/16) ~~ color(magenta)(12.88y=rsinθ=66sin(31π16)12.88