x = r cos theta and y = r sin thetax=rcosθandy=rsinθ.
Here, r = 7 and theta=-35pi/12θ=−35π12.
Note that cos (-x) = cos x, sin (-x)=-sinx, cos(3pi-x)=-cos x and sin(3pi-x)=sin xcos(−x)=cosx,sin(−x)=−sinx,cos(3π−x)=−cosxandsin(3π−x)=sinx.
The angle 3pi-x3π−x is in the second quadrant.
cos (-35pi/12)=cos (pi/12-3pi)=cos(3pi-pi/12)=-cos(pi/12)cos(−35π12)=cos(π12−3π)=cos(3π−π12)=−cos(π12).
sin (-35pi/12)=sin (pi/12-3pi)=-sin(3pi-pi/12)=-sin(pi/12)sin(−35π12)=sin(π12−3π)=−sin(3π−π12)=−sin(π12)