What is the Cartesian form of ( -9 , ( - 15pi)/2 ) ?

1 Answer
Jul 26, 2018

(0. -9)

Explanation:

We have the coordinate (-9, (-15pi)/2) in polar form.

Coordinates in polar form have the standard form (color(green)(r), color(purple)(Θ)).

To convert from polar form to Cartesian form, we use the following formulas:

  • color(red)(x) = color(green)(r)coscolor(purple)(Θ)
  • color(blue)(y) = color(green)(r)sincolor(purple)(Θ)

Now, let's plug stuff in. We know color(green)(r) = -9 and color(purple)(Θ) = (-15pi)/2

color(red)(x) = (-9)*cos((-15pi)/2)

color(red)(x) = (-9)*(0)

color(red)(x) = 0

color(blue)(y) = (-9)*sin((-15pi)/2)

color(blue)(y) = (-9)*(1)

color(blue)(y) = -9

We get color(red)(x) = 0 and color(blue)(y) = -9, making our Cartesian coordinate (0, -9).