What is the Cartesian form of (99,(17pi )/12)?

2 Answers
Mar 19, 2017

(-95.63, -25.62)

Explanation:

polar coordinates (r, theta) = (99, (17pi)/12) is in quadrant IV

rectangular coordinates (rsin theta, r cos theta)

Make sure your calculator MODE is in Radians:

99 sin (17pi/12) ~~-95.6266568

99 cos (17pi/12) ~~ -25.62308547

Rectangular coordinates: (-95.63, -25.62)

Mar 19, 2017

-(99 (sqrt3 -1))/(2sqrt2),-(99 (sqrt3 +1))/(2sqrt2)

Explanation:

In polar coordinates it is r=99 and theta=(17pi)/12. In cartesean form it would be x= rcos theta and y = r sin theta

Accordingly cartesean coordinates would be x=99 cos ((17pi)/12)=99 cos(pi +(5pi)/12)= -99 cos((5pi)/12)= -99 cos 75^o=-(99 (sqrt3 -1))/(2sqrt2)

similarly,y= 99 sin ((17pi)/12)= -99 sin((5pi)/12)= -99 sin 75^o= -(99(sqrt3 +1))/(2sqrt2)