What is the Cartesian form of r^2-rtheta = -cottheta+3tantheta r2rθ=cotθ+3tanθ?

1 Answer
Feb 18, 2018

Cartesian form of
r^2-rtheta=-cottheta+3tanthetar2rθ=cotθ+3tanθ is

sqrt(x^2+y^2)(sqrt(x^2+y^2)-tan^-1(y/x))=-x/y+(3y)/xx2+y2(x2+y2tan1(yx))=xy+3yx

Explanation:

Given:
r^2-rtheta=-cottheta+3tanthetar2rθ=cotθ+3tanθ

x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
r=sqrt(x^2+y^2)r=x2+y2

theta=tan^-1(y/a)θ=tan1(ya)
tantheta=y/xtanθ=yx

cottheta=x/ycotθ=xy

With this transformations,

r^2-rtheta=r(r-theta)r2rθ=r(rθ)
sqrt(x^2+y^2)(sqrt(x^2+y^2)-tan^-1(y/x))x2+y2(x2+y2tan1(yx))

-cottheta+3tantheta=-x/y+3y/xcotθ+3tanθ=xy+3yx

Thus,

sqrt(x^2+y^2)(sqrt(x^2+y^2)-tan^-1(y/x))=-x/y+(3y)/xx2+y2(x2+y2tan1(yx))=xy+3yx