Multiply both sides by r^5sin^3(theta):
r^7sin^3(theta) + (theta)r^5sin^3(theta) = 4r^5cos^3(theta) - r^5sin^5(theta)
Do some regrouping:
r^4(rsin(theta))^3 + (theta)r^2(rsin(theta))^3 = 4r^2(rcos(theta))^3 - (rsin(theta))^5
Substitute x for (rcos(theta)) and y for (rsin(theta)):
r^4y^3 + (theta)r^2y^3 = 4r^2x^3 - y^5
Substitute (x^2 + y^2) for r^2
(x^2 + y^2)^2y^3 + (theta)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5
We cannot merely substitute tan^-1(y/x) for theta; we must specify that x!=0 and y!=0 and then handle special cases for x < 0, x > 0 and y>=0, and x > 0 and y < 0
For x > 0 and y>0:
(x^2 + y^2)^2y^3 + tan^-1(y/x)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5
For x < 0:
(x^2 + y^2)^2y^3 + (tan^-1(y/x) + pi)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5
For x > 0 and y < 0
(x^2 + y^2)^2y^3 + (tan^-1(y/x) + 2pi)(x^2 + y^2)y^3 = 4(x^2 + y^2)x^3 - y^5