What is the Cartesian form of r-theta = -2sin^3theta+sec^2theta ?

1 Answer
Feb 19, 2018

r-theta=-2sin^3theta+sec^2theta in cartesian form is

sqrt(x^2+y^2)-tan^-1(y/x)=-2(y/sqrt(x^2+y^2))^3+(x^2+y^2)/x^2

Explanation:

r=sqrt(x^2+y^2)
theta=tan^-1(y/x)

sintheta=y/sqrt(x^2+y^2)

-2sin^3theta=-2(sintheta)^3=-2(y/sqrt(x^2+y^2))^3

sec^2theta=1/cos^2theta=1/(x^2/(x^2+y^2))=(x^2+y^2)/x^2

Thus,
r-theta=-2sin^3theta+sec^2theta in cartesian form is

sqrt(x^2+y^2)-tan^-1(y/x)=-2(y/sqrt(x^2+y^2))^3+(x^2+y^2)/x^2