What is the cross product of (14i - 7j - 7k)(14i7j7k) and (-5i + 12j + 2 k)(5i+12j+2k)?

1 Answer
Mar 16, 2016

70hati + 7hatj + 133hatk70ˆi+7ˆj+133ˆk

Explanation:

We know that vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) hatnA×B=ABsin(θ)ˆn, where hatnˆn is a unit vector given by the right hand rule.

So for of the unit vectors hatiˆi, hatjˆj and hatkˆk in the direction of xx, yy and zz respectively, we can arrive at the following results.

color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))

Another thing that you should know is that cross product is distributive, which means

vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC.

We are going to need all of these results for this question.

(14hati - 7hatj - 7hatk) xx (-5hati + 12hatj + 2hatk)

= color(white)( (color(black){qquad 14hati xx (-5hati) + 14hati xx 12hatj + 14hati xx 2hatk}), (color(black){-7hatj xx (-5hati) - 7hatj xx 12hatj - 7hatj xx 2hatk}), (color(black){-7hatk xx (-5hati) - 7hatk xx 12hatj - 7hatk xx 2hatk}) )

= color(white)( (color(black){-70(vec0) + 168hatk qquad - 28hatj}), (color(black){-35hatk qquad - 84(vec0) - 14hati}), (color(black){qquad +35hatj qquad + 84hati qquad - 14(vec0)}) )

= 70hati + 7hatj + 133hatk