What is the cross product of (2i -3j + 4k) and (4 i + 4 j + 2 k)?

1 Answer
May 13, 2018

The vector is =〈-22,12,20〉

Explanation:

The cross product of 2 vectors is calculated with the determinant

| (veci,vecj,veck), (d,e,f), (g,h,i) |

where veca=〈d,e,f〉 and vecb=〈g,h,i〉 are the 2 vectors

Here, we have veca=〈2,-3,4〉 and vecb=〈4,4,2〉

Therefore,

| (veci,vecj,veck), (2,-3,4), (4,4,2) |

=veci| (-3,4), (4,2) | -vecj| (2,4), (4,2) | +veck| (2,-3), (4,4) |

=veci((-3)*(2)-(4)*(4))-vecj((2)*(2)-(4)*(4))+veck((2)*(4)-(-3)*(4))

=〈-22,12,20〉=vecc

Verification by doing 2 dot products

〈-22,12,20〉.〈2,-3,4〉=(-22)*(2)+(12)*(-3)+(20)*(4)=0

〈-22,12,20〉.〈4,4,2〉=(-22)*(4)+(12)*(4)+(20)*(2)=0

So,

vecc is perpendicular to veca and vecb