What is the cross product of (2i -3j + 4k) and (i + j -7k)?

2 Answers

17i+18j+5k

Explanation:

The cross-product of vectors (2i-3j+4k) & (i+j-7k) is given by using determinant method

(2i-3j+4k)\times(i+j-7k)=17i+18j+5k

Jun 27, 2018

The vector is = 〈17,18,5〉

Explanation:

The cross product of 2 vectors is calculated with the determinant

| (veci,vecj,veck), (d,e,f), (g,h,i) |

where veca=〈d,e,f〉 and vecb=〈g,h,i〉 are the 2 vectors

Here, we have veca=〈2,-3,4〉 and vecb=〈1,1,-7〉

Therefore,

| (veci,vecj,veck), (2,-3,4), (1,1,-7) |

=veci| (-3,4), (1,-7) | -vecj| (2,4), (1,-7) | +veck| (2,-3), (1,1) |

=veci((-3)*(-7)-(4)*(1))-vecj((2)*(-7)-(4)*(1))+veck((2)*(1)-(-3)*(1))

=〈17,18,5〉=vecc

Verification by doing 2 dot products

〈17,18,5〉.〈2,-3,4〉=(17)*(2)+(18)*(-3)+(5)*(4)=0

〈17,18,5〉.〈1,1,-7〉=(17)*(1)+(18)*(1)+(5)*(-7)=0

So,

vecc is perpendicular to veca and vecb