What is the cross product of #[3,-1,2]# and #[5,1,-3] #?
1 Answer
Explanation:
We know that
So for of the unit vectors
#color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))#
Another thing that you should know is that cross product is distributive, which means
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC# .
We are going to need all of these results for this question.
#[3,-1,2] xx [5,1,-3]#
#= (3hati - hatj + 2hatk) xx (5hati + hatj - 3hatk)#
#= color(white)( (color(black){qquad 3hati xx 5hati + 3hati xx hatj + 3hati xx (-3hatk)}), (color(black){-hatj xx 5hati - hatj xx hatj - hatj xx (-3hatk)}), (color(black){+2hatk xx 5hati + 2hatk xx hatj + 2hatk xx (-3hatk)}) )#
#= color(white)( (color(black){15(vec0) + 3hatk + 9hatj}), (color(black){+5hatk qquad - vec0 quad + 3hati}), (color(black){quad +10hatj quad - 2hati - 6(vec0)}) )#
#= hati + 19hatj + 8hatk#
#= [1,19,8]#