What is the cross product of #[3, -4, 2]# and #[1, 1, 18] #?
1 Answer
Explanation:
We know that
So for of the unit vectors
#color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))#
Another thing that you should know is that cross product is distributive, which means
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC# .
We are going to need all of these results for this question.
#[3,-4,2] xx [1,1,18] #
#= (3hati - 4hatj + 2hatk) xx (hati + hatj + 18hatk)#
#= color(white)( (color(black){qquad 3hati xx hati + 3hati xx hatj + 3hati xx 18hatk}), (color(black){-4hatj xx hati - 4hatj xx hatj - 4hatj xx 18hatk}), (color(black){+2hatk xx hati + 2hatk xx hatj + 2hatk xx 18hatk}) )#
#= color(white)( (color(black){quad 3(vec0) + 3hatk qquad - 54hatj}), (color(black){+4hatk qquad - 4(vec0) - 72hati}), (color(black){qquad +2hatj qquad - 2hati qquad + 36(vec0)}) )#
#= -74hati - 52hatj + 7hatk#
#= [-74,-52,7]#