What is the derivative of f(x)=e^(4x)*ln(1-x) ?

1 Answer
Aug 27, 2014

y'=e^(4x)(4ln(1-x)-1/(1-x))

Explanation:

f(x)=e^(4x)⋅ln(1−x)

Suppose, y=f(x)*g(x)

In general Product Rule is,

y'=f(x)*g'(x)+f'(x)*g(x)

Assume, f(x)=e^(4x) and g(x)=ln(1-x)

differentiating these functions with respect to x, we get

f'(x)=4*e^(4x)

and g'(x)=-1/(1-x)

Plugging these in product rule definition yields,

y'=e^(4x)(-1/(1-x))+(4*e^(4x))ln(1-x)

y'=e^(4x)(4ln(1-x)-1/(1-x))