What is the derivative of f(x)=e^(4x)*ln(1-x) ?
1 Answer
Aug 27, 2014
y'=e^(4x)(4ln(1-x)-1/(1-x)) Explanation:
f(x)=e^(4x)⋅ln(1−x) Suppose,
y=f(x)*g(x) In general Product Rule is,
y'=f(x)*g'(x)+f'(x)*g(x) Assume,
f(x)=e^(4x) andg(x)=ln(1-x) differentiating these functions with respect to
x , we get
f'(x)=4*e^(4x) and
g'(x)=-1/(1-x) Plugging these in product rule definition yields,
y'=e^(4x)(-1/(1-x))+(4*e^(4x))ln(1-x)
y'=e^(4x)(4ln(1-x)-1/(1-x))