What is the derivative of #f(x)=e^(4x)*ln(1-x)# ?

1 Answer
Aug 27, 2014

#y'=e^(4x)(4ln(1-x)-1/(1-x))#

Explanation:

#f(x)=e^(4x)⋅ln(1−x)#

Suppose, #y=f(x)*g(x)#

In general Product Rule is,

#y'=f(x)*g'(x)+f'(x)*g(x)#

Assume, #f(x)=e^(4x)# and #g(x)=ln(1-x)#

differentiating these functions with respect to #x#, we get

#f'(x)=4*e^(4x)#

and #g'(x)=-1/(1-x)#

Plugging these in product rule definition yields,

#y'=e^(4x)(-1/(1-x))+(4*e^(4x))ln(1-x)#

#y'=e^(4x)(4ln(1-x)-1/(1-x))#