What is the derivative of f(x)=tan^-1(x)f(x)=tan1(x) ?

1 Answer
Jul 1, 2015

I seem to recall my professor forgetting how to deriving this. This is what I showed him:

y = arctanxy=arctanx

tany = xtany=x

sec^2y (dy)/(dx) = 1sec2ydydx=1

(dy)/(dx) = 1/(sec^2y)dydx=1sec2y

Since tany = x/1tany=x1 and sqrt(1^2 + x^2) = sqrt(1+x^2)12+x2=1+x2, sec^2y = (sqrt(1+x^2)/1)^2 = 1+x^2sec2y=(1+x21)2=1+x2

=> color(blue)((dy)/(dx) = 1/(1+x^2))dydx=11+x2

I think he originally intended to do this:

(dy)/(dx) = 1/(sec^2y)dydx=1sec2y

sec^2y = 1+tan^2ysec2y=1+tan2y

tan^2y = x -> sec^2y = 1+x^2tan2y=xsec2y=1+x2

=> (dy)/(dx) = 1/(1+x^2)dydx=11+x2