What is the derivative of sqrt(2x)2x?

1 Answer
Dec 13, 2014

Power rule: (dy)/(dx)[x^n]=n*x^(n-1)dydx[xn]=nxn1

Power rule + chain rule: (dy)/(dx)[u^n]=n*u^(n-1)*(du)/(dx)dydx[un]=nun1dudx

Let u=2xu=2x so (du)/(dx)=2dudx=2

We're left with y=sqrt(u)y=u which can be rewritten as y=u^(1/2)y=u12

Now, (dy)/(dx)dydx can be found using the power rule and the chain rule.

Back to our problem: (dy)/(dx)= 1/2 * u^(-1/2)*(du)/(dx)dydx=12u12dudx

plugging in (du)/(dx)dudx we get:

(dy)/(dx)= 1/2 * u^(-1/2)*(2)dydx=12u12(2)

we know that: 2/2=122=1

therefore, (dy)/(dx)=u^(-1/2)dydx=u12

Plugging in the value for uu we find that:
(dy)/(dx)=2x^(-1/2)dydx=2x12