Power rule: (dy)/(dx)[x^n]=n*x^(n-1)dydx[xn]=n⋅xn−1
Power rule + chain rule: (dy)/(dx)[u^n]=n*u^(n-1)*(du)/(dx)dydx[un]=n⋅un−1⋅dudx
Let u=2xu=2x so (du)/(dx)=2dudx=2
We're left with y=sqrt(u)y=√u which can be rewritten as y=u^(1/2)y=u12
Now, (dy)/(dx)dydx can be found using the power rule and the chain rule.
Back to our problem: (dy)/(dx)= 1/2 * u^(-1/2)*(du)/(dx)dydx=12⋅u−12⋅dudx
plugging in (du)/(dx)dudx we get:
(dy)/(dx)= 1/2 * u^(-1/2)*(2)dydx=12⋅u−12⋅(2)
we know that: 2/2=122=1
therefore, (dy)/(dx)=u^(-1/2)dydx=u−12
Plugging in the value for uu we find that:
(dy)/(dx)=2x^(-1/2)dydx=2x−12