What is the derivative of x * ((4-x^2)^(1/2))?

1 Answer
Dec 14, 2017

-(2*(-2+x^2))/sqrt(4-x^2)

Explanation:

Using the product rule:

f'(a*b)=b*f'(a)+a*f'(b)

Let color(white)(88)a=x

Let color(white)(88)b=(4-x^2)^(1/2)

f'(a)=1

f'(b)=1/2(4-x^2)^(-1/2)*-2x=-x(4-x^2)^(-1/2)

f'(a*b)=(4-x^2)^(1/2) * 1+x * -x(4-x^2)^(-1/2)

->=(4-x^2)^(1/2)+(-x^2)/(4-x^2)^(1/2)=-(2*(-2+x^2))/sqrt(4-x^2)