What is the domain and range of f(x)= sqrt(4x-x^2)?

1 Answer
Jul 31, 2017

The domain is x in [0,4]
The range is f(x) in [0,2]

Explanation:

For the domain, what's under the square root sign is >=0

Therefore,

4x-x^2>=0

x(4-x)>=0

Let g(x)=sqrt(x(4-x))

We can build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaa)0color(white)(aaaaaa)4color(white)(aaaaaaa)+oo

color(white)(aaaa)xcolor(white)(aaaaaaaa)-color(white)(aaaa)0color(white)(aa)+color(white)(aaaaaaa)+

color(white)(aaaa)4-xcolor(white)(aaaaa)+color(white)(aaaa)color(white)(aaa)+color(white)(aa)0color(white)(aaaa)-

color(white)(aaaa)g(x)color(white)(aaaaaa)-color(white)(a)color(white)(aaa)0color(white)(aa)+color(white)(aa)0color(white)(aaaa)-

Therefore

g(x)>=0 when x in [0,4]

Let,

y=sqrt(4x-x^2)

hen,

y^2=4x-x^2

x^2-4x+y^2=0

The solutions this quadratic equation is when the discriminant Delta>=0

So,

Delta=(-4)^2-4*1*y^2

16-4y^2>=0

4(4-y^2)>=0

4(2+y)(2-y)>=0

Let h(y)=(2+y)(2-y)

We build the sign chart

color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaaa)-2color(white)(aaaa)#color(white)(aaaaaa)2#color(white)(aaaaaa)+oo

color(white)(aaaa)2+ycolor(white)(aaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+

color(white)(aaaa)2-ycolor(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-

color(white)(aaaa)h(y)color(white)(aaaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-

Therefore,

h(y)>=0, when y in [-2,2]

This is not possible for the whole interval, so the range is y in [0,2]

graph{sqrt(4x-x^2) [-10, 10, -5, 5]}