For the domain, what's under the square root sign is >=0
Therefore,
4x-x^2>=0
x(4-x)>=0
Let g(x)=sqrt(x(4-x))
We can build a sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaaa)0color(white)(aaaaaa)4color(white)(aaaaaaa)+oo
color(white)(aaaa)xcolor(white)(aaaaaaaa)-color(white)(aaaa)0color(white)(aa)+color(white)(aaaaaaa)+
color(white)(aaaa)4-xcolor(white)(aaaaa)+color(white)(aaaa)color(white)(aaa)+color(white)(aa)0color(white)(aaaa)-
color(white)(aaaa)g(x)color(white)(aaaaaa)-color(white)(a)color(white)(aaa)0color(white)(aa)+color(white)(aa)0color(white)(aaaa)-
Therefore
g(x)>=0 when x in [0,4]
Let,
y=sqrt(4x-x^2)
hen,
y^2=4x-x^2
x^2-4x+y^2=0
The solutions this quadratic equation is when the discriminant Delta>=0
So,
Delta=(-4)^2-4*1*y^2
16-4y^2>=0
4(4-y^2)>=0
4(2+y)(2-y)>=0
Let h(y)=(2+y)(2-y)
We build the sign chart
color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaaa)-2color(white)(aaaa)#color(white)(aaaaaa)2#color(white)(aaaaaa)+oo
color(white)(aaaa)2+ycolor(white)(aaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+
color(white)(aaaa)2-ycolor(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-
color(white)(aaaa)h(y)color(white)(aaaaa)-color(white)(aaaa)0color(white)(aaaa)+color(white)(aaaa)0color(white)(aaaa)-
Therefore,
h(y)>=0, when y in [-2,2]
This is not possible for the whole interval, so the range is y in [0,2]
graph{sqrt(4x-x^2) [-10, 10, -5, 5]}