What is the domain and range of f(x) = (x-1)/(x^2+1)?

1 Answer
Mar 15, 2018

"Domain":x inRR
"Range":f(x)in[-(sqrt(2)+1)/2,(sqrt(2)-1)/2]

Explanation:

Considering that all real values of x will give a non-zero value for x^2+1, we can say that for f(x), domain = x inRR

For range, we need the maximum and minimum.
f(x)=(x-1)/(x^2+1)

f'(x)=((x^2+1)-2x(x-1))/(x^2+1)^2=(x^2+1-2x^2+2x)/(x^2+1)=(-x^2+2x+1)/(x^2+1)

The maximum and minimum values occur when f'(x)=0

x^2-2x-1=0

x=(2+-sqrt((-2)^2-4(-1)))/2

x=(2+-sqrt8)/2=(2+-2sqrt(2))/2=1+-sqrt2

Now, we input our x values into f(x):
(1+sqrt(2)-1)/((1+sqrt(2))^2+1)=(sqrt(2)-1)/2
(1-sqrt(2)-1)/((1-sqrt(2))^2+1)=-(sqrt(2)+1)/2

f(x)in[-(sqrt(2)+1)/2,(sqrt(2)-1)/2]