The function is
y=(2x^2)/(x^2-1)y=2x2x2−1
We factorise the denominator
y=(2x^2)/((x+1)(x-1))y=2x2(x+1)(x−1)
Therefore,
x!=1x≠1 and x!=-1x≠−1
The domain of y is x in (-oo,-1) uu (-1,1) uu (1,+oo)x∈(−∞,−1)∪(−1,1)∪(1,+∞)
Let's rearrage the function
y(x^2-1)=2x^2y(x2−1)=2x2
yx^2-y=2x^2yx2−y=2x2
yx^2-2x^2=yyx2−2x2=y
x^2=y/(y-2)x2=yy−2
x=sqrt(y/(y-2))x=√yy−2
For xx to a solution, y/(y-2)>=0yy−2≥0
Let f(y)=y/(y-2)f(y)=yy−2
We need a sign chart
color(white)(aaaa)aaaayycolor(white)(aaaa)aaaa-oo−∞color(white)(aaaaaa)aaaaaa00color(white)(aaaaaaa)aaaaaaa22color(white)(aaaa)aaaa+oo+∞
color(white)(aaaa)aaaayycolor(white)(aaaaaaaa)aaaaaaaa-−color(white)(aaa)aaa00color(white)(aaa)aaa++color(white)(aaaa)aaaa++
color(white)(aaaa)aaaay-2y−2color(white)(aaaaa)aaaaa-−color(white)(aaa)aaacolor(white)(aaa)aaa-−color(white)(aa)aa||∣∣color(white)(aa)aa++
color(white)(aaaa)aaaaf(y)f(y)color(white)(aaaaaa)aaaaaa++color(white)(aaa)aaa00color(white)(aa)aa-−color(white)(aa)aa||∣∣color(white)(aa)aa++
Therefore,
f(y)>=0f(y)≥0 when y in (-oo,0] uu (2,+oo)y∈(−∞,0]∪(2,+∞)
graph{2(x^2)/(x^2-1) [-16.02, 16.02, -8.01, 8.01]}