What is the dot product of two vectors?

1 Answer
Dec 25, 2014

The dot product of two vectors is a quite interesting operation because it gives, as a result, a...SCALAR (a number without vectorial properties)!

As a definition you have:

Given two vectors #vecv# and #vecw# the dot product is given by:

#vecv*vecw=|vecv|*|vecw|*cos(theta)#

i.e. is equal to the product of the modules of the two vectors times de cosine of the angle between them.
enter image source here

For example:
if #|vecv|=10# and #|vecw|=5# and #theta =60°#
#vecv*vecw=|vecv|*|vecw|*cos(theta)=10*5*cos(60°)=25#

Another way of calculating the dot product is to use the coordinates of the vectors:
If you have:
#vecv=aveci+bvecj+cveck# and #vecw=dveci+evecj+fveck#
(where #a,b,c,d,e and f# are real numbers)
you can write:
#vecv*vecw=(a*d)+(b*e)+(c*f)#
For example:
if:
#vecv=3veci+5vecj-3veck# and #vecw=-1veci+2vecj+3veck#
#vecv*vecw=(3*-1)+(5*2)+(-3*3)=#
#=-3+10-9=-2#

This operation has important practical applications. For example in Physics the dot product of Force (a vector) and displacement (a vector) gives as a result a number without vectorial characteristics, called, Work.