What is the equation of a parabola that is a vertical translation of #y=-5x^2+4x-3# of -12 and a horizontal translation of -9?

1 Answer
May 16, 2018

#y=-5(x+9)^2+4(x+9)-15#
#y=−5x^2−86x−384#

Explanation:

To ma(x+e this easier, let's call our function #f(x)#

To vertically translate the function by #a# we just add #a#, #f(x)+a#.

To horizontally translate a function by #b#, we do #x-b#, #f(x-b)#

The function needs to be translated 12 units down and 9 units to the left, so we will do:
#f(x+9)-12#

This gives us:
#y=-5(x+9)^2+4(x+9)-3-12#

#y=-5(x+9)^2+4(x+9)-15#

After expanding all the brackets, multiplying by factors and simplifying, we get:
#y=−5x^2−86x−384#