What is the integral of e^(5x) *cos 3x dx?

1 Answer
Apr 23, 2015

This can be solved by successive application of the product rule of integration

int e^(5x) cosx dx= e^(5x) sinx - int 5e^(5x) sinx dx

=e^(5x) sinx - 5[-e^(5x)cosx - int -5e^(5x)cosx dx]

=e^(5x)sinx +5e^(5x)cosx -25int e^(5x)cosxdx

26int e^(5x) cosx dx= e^(5x)sinx +5e^(5x)cosx

int e^(5x) cosx dx=1/26[ e^(5x)sinx +5e^(5x) cosx]