What is the integral of x/(1+x^2)?

1 Answer
Nov 21, 2016

intx/(x^2+1)dx=1/2ln(x^2+1)+C

Explanation:

Let u(x)=1+x^2" " then " "du(x) =2xdx
" "
color(blue)((d(u(x)))/2=xdx)
" "
Start solving the integral.
" "
intx/(x^2+1)dx
" "
=intcolor(blue)((d(u(x)))/(2u(x))
" "
=1/2int(du(x))/(u(x))
" "
=1/2lnabs(u(x))+C
" "
=1/2lnabs(x^2+1)+C
" "
Because x^2+1>0 " " then " " abs(x^2+1)=x^2+1
" "
Therefore,
" "
intx/(x^2+1)dx=1/2ln(x^2+1)+C