What is the integral of (x^2)(lnx)(x2)(lnx)?

1 Answer
Apr 6, 2018

int x^2*Lnx*dx=x^3/3*Lnx-x^3/9+Cx2lnxdx=x33lnxx39+C

Explanation:

After setting dv=x^2*dxdv=x2dx and u=Lnxu=lnx for using integration by parts, v=x^3/3v=x33 and du=dx/xdu=dxx

Hence,

int udv=uv-int vduudv=uvvdu

int x^2*Lnx*dx=x^3/3*Lnx-int x^3/3*dx/xx2lnxdx=x33lnxx33dxx

=x^3/3*Lnx-int x^2/3*dxx33lnxx23dx

=x^3/3*Lnx-x^3/9+Cx33lnxx39+C