What is the integral of (x^2)(lnx)(x2)(lnx)? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin Apr 6, 2018 int x^2*Lnx*dx=x^3/3*Lnx-x^3/9+C∫x2⋅lnx⋅dx=x33⋅lnx−x39+C Explanation: After setting dv=x^2*dxdv=x2⋅dx and u=Lnxu=lnx for using integration by parts, v=x^3/3v=x33 and du=dx/xdu=dxx Hence, int udv=uv-int vdu∫udv=uv−∫vdu int x^2*Lnx*dx=x^3/3*Lnx-int x^3/3*dx/x∫x2⋅lnx⋅dx=x33⋅lnx−∫x33⋅dxx =x^3/3*Lnx-int x^2/3*dxx33⋅lnx−∫x23⋅dx =x^3/3*Lnx-x^3/9+Cx33⋅lnx−x39+C Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 69885 views around the world You can reuse this answer Creative Commons License