What is the inverse of a logarithmic function?

1 Answer
Dec 10, 2015

The inverse of a logarithmic function is exponential function.

Explanation:

The inverse of a logarithmic function is exponential function:
#color(white)(xxx)f^-1(x)=g^-1(a^x)#
Because logarithmic fuction is
#color(white)(xxx)f(x)=log_a g(x)#
#=>g(x)=a^f(x)#
#=>g^-1(g(x))=g^-1(a^f(x))#
#=>x=g^-1(a^f(x))#
#=>f^-1(x)=g^-1(a^x)#

Considering f(x)=x is axis of symmetry, for #g(x)=x# and #a=10#,
http://rechneronline.de/