What is the inverse of y= -log (1.05x+10^-2) ?

1 Answer
Jun 25, 2017

f^-1(x)=(10^-x-10^-2)/1.05

Explanation:

Given: f(x) = -log (1.05x+10^-2)

Let x = f^-1(x)

f(f^-1(x)) = -log (1.05f^-1(x)+10^-2)

By definition f(f^-1(x)) = x

x = -log (1.05f^-1(x)+10^-2)

Multiply both sides by -1:

-x = log (1.05f^-1(x)+10^-2)

Make both sides the exponent of 10:

10^-x = 10^(log (1.05f^-1(x)+10^-2))

Because 10 and log are inverses, the right side reduces to the argument:

10^-x = 1.05f^-1(x)+10^-2

Flip the equation:

1.05f^-1(x)+10^-2=10^-x

Subtract 10^-2 from both sides:

1.05f^-1(x)=10^-x-10^-2

Divide both sides by 1.05:

f^-1(x)=(10^-x-10^-2)/1.05

Check:

f(f^-1(x)) = -log (1.05((10^-x-10^-2)/1.05)+10^-2)

f(f^-1(x)) = -log (10^-x-10^-2+10^-2)

f(f^-1(x)) = -log (10^-x)

f(f^-1(x)) = -(-x)

f(f^-1(x)) = x

f^-1(f(x)) =(10^-(-log (1.05x+10^-2) )-10^-2)/1.05

f^-1(f(x)) =(10^(log (1.05x+10^-2) )-10^-2)/1.05

f^-1(f(x)) =(1.05x+10^-2-10^-2)/1.05

f^-1(f(x)) =(1.05x)/1.05

f^-1(f(x)) =x

Both conditions check.