What is the inverse of y=log_4( x-3) +2x? ?

1 Answer
Feb 26, 2018

x = 1/2(6+W(2^2y-11))

Explanation:

We can solve this problem using the so called Lambert function W(cdot)

https://en.wikipedia.org/wiki/Lambert_W_function

y = lnabs(x-3)/ln4 + 2x rArr y ln4=lnabs(x-3)+2x ln4

Now making z = x-3

e^(y ln4)=z e^(2(z+3)ln4) = ze^(2z)e^(6 ln4) or

e^((y-6)ln4)=z e^(2z) or

2 e^((y-6)ln4) = 2z e^(2z)

Now using the equivalence

Y = X e^X rArr X = W(Y)

2z=W(2 e^((y-6)ln4)) rArr z = 1/2 W(2 e^((y-6)ln4))

and finally

x = 1/2 W(2 e^((y-6)ln4))+3 that can be simplified to

x = 1/2(6+W(2^(2y-11)))