What is the least common multiple of #{120, 130, 144}?
1 Answer
May 18, 2016
Explanation:
Let us start by finding the prime factorisations of each of the numbers:
120 = 2 xx 2 xx 2 xx 3 xx 5
130 = 2 xx 5 xx 13
144 = 2 xx 2 xx 2 xx 2 xx 3 xx 3
So the smallest number that contains all of these factors in these multiplicities is:
2 xx 2 xx 2 xx 2 xx 3 xx 3 xx 5 xx 13 = 9360
If you don't have a calculator to hand, an easier way to do that last multiplication might be:
2 xx 2 xx 2 xx 2 xx 3 xx 3 xx 5 xx 13
=13 xx (3 xx 3) xx 2 xx 2 xx 2 xx (2 xx 5)
=13 xx 9 xx 2 xx 2 xx 2 xx 10
=13 xx (10 - 1) xx 2 xx 2 xx 2 xx 10
=(130 - 13) xx 2 xx 2 xx 2 xx 10
=(117 xx 2) xx 2 xx 2 xx 10
=(234 xx 2) xx 2 xx 10
=(468 xx 2) xx 10
=936 xx 10
=9360