What is the least common multiple of #{120, 130, 144}?

1 Answer
May 18, 2016

9360

Explanation:

Let us start by finding the prime factorisations of each of the numbers:

120 = 2 xx 2 xx 2 xx 3 xx 5

130 = 2 xx 5 xx 13

144 = 2 xx 2 xx 2 xx 2 xx 3 xx 3

So the smallest number that contains all of these factors in these multiplicities is:

2 xx 2 xx 2 xx 2 xx 3 xx 3 xx 5 xx 13 = 9360

If you don't have a calculator to hand, an easier way to do that last multiplication might be:

2 xx 2 xx 2 xx 2 xx 3 xx 3 xx 5 xx 13

=13 xx (3 xx 3) xx 2 xx 2 xx 2 xx (2 xx 5)

=13 xx 9 xx 2 xx 2 xx 2 xx 10

=13 xx (10 - 1) xx 2 xx 2 xx 2 xx 10

=(130 - 13) xx 2 xx 2 xx 2 xx 10

=(117 xx 2) xx 2 xx 2 xx 10

=(234 xx 2) xx 2 xx 10

=(468 xx 2) xx 10

=936 xx 10

=9360