What is int tan^-1 x dx ?

1 Answer
Feb 20, 2018

I=tan^-1(x)x-1/2ln(x^2+1)+C

Explanation:

We want to solve

I=inttan^-1(x)dx

Use integration by parts / partial integration

intudv=uv-intvdu

Let u=tan^-1(x) and dv=1dx

Then du=1/(x^2+1)dx and v=x

I=tan^-1(x)x-intx/(x^2+1)dx

Make a substitution u=x^2+1=>(du)/dx=2x

I=tan^-1(x)x-1/2int1/(u)du

=tan^-1(x)x-1/2ln(u)+C

Substitute back u=x^2+1

I=tan^-1(x)x-1/2ln(x^2+1)+C