What is int tan^-1 x dx ?
1 Answer
Feb 20, 2018
I=tan^-1(x)x-1/2ln(x^2+1)+C
Explanation:
We want to solve
I=inttan^-1(x)dx
Use integration by parts / partial integration
intudv=uv-intvdu
Let
Then
I=tan^-1(x)x-intx/(x^2+1)dx
Make a substitution
I=tan^-1(x)x-1/2int1/(u)du
=tan^-1(x)x-1/2ln(u)+C
Substitute back
I=tan^-1(x)x-1/2ln(x^2+1)+C