What is the polar form of (1,18)(1,18)?

2 Answers
Jun 1, 2016

(r,theta)=(5sqrt(13),arctan(18))(r,θ)=(513,arctan(18))

Explanation:

Given Cartesian coordinates (x,y)(x,y) in Quadrant I

r=sqrt(x^2+y^2)r=x2+y2
and
theta=arctan(y/x)θ=arctan(yx)

Jun 1, 2016

(18, 1.5)

Explanation:

Polar format: (r, thetaθ)

r=sqrt(x^2+y^2)r=x2+y2

theta = tan^-1(y/x)θ=tan1(yx)

apply both formulas when going from Cartesian -> polar

sqrt(1^2+18^2) = sqrt(325) ~~ 18.012+182=32518.0

theta = tan^-1(18/1) = tan^-1(18) ~~ 1.5 radiansθ=tan1(181)=tan1(18)1.5radians

Thus our answer of:

Polar format of (1,18) Cartesian is:

(18, 1.5)