#(r,theta)=(sqrt(10),arctan(3)) approx (3.16,1.25)#, where the second number is measured in radians.
Explanation:
The polar coordinates #(r,theta)# of a point with rectangular coordinates #(x,y)# satisfy #r^{2}=x^{2}+y^{2}# and #tan(theta)=y/x# (when #x !=0#). Since the point #(x,y)=(1,3)# is in the first quadrant, we can use the arctangent function to solve for the angle if we take #r# to be the positive square root of #x^{2}+y^{2}=1^{2}+3^{2}=10#.