What is the polar form of ( 13,1 )?

1 Answer
Mar 22, 2018

(sqrt(170),tan^-1(1/13))-=(13.0,0.0768^c)

Explanation:

For a given set of coordinates (x,y), (x,y)->(rcostheta,rsintheta)

r=sqrt(x^2+y^2)
theta=tan^-1(y/x)

r=sqrt(13^2+1^2)=sqrt(169+1)=sqrt(170)=13.0
theta=tan^-1(1/13)=0.0768^c

(13,1)->(sqrt(170),tan^-1(1/13))-=(13.0,0.0768^c)