What is the polar form of ( 13,-4 )(13,4)?

2 Answers
Nov 18, 2017

Polar form is (13.6 , 5.985) or (13.6 , -0.298) (13.6,5.985)or(13.6,0.298)

Explanation:

(13 , -4) (13,4) lies on 44 th quadrant.

r =sqrt(13^2 + (-4)^2)= sqrt 185=13.6 r=132+(4)2=185=13.6

tan alpha = 4/13 :. alpha = tan^-1(4/13)=0.298498

Since theta lies 4 th quadrant.

theta= 2pi- alpha = 2pi- 0.298498 ~~5.984686 or

theta= (- alpha)= -0.298498

Polar form is (r, theta) :. (13.6 , 5.985) or (13.6 , -0.298) [Ans]

Nov 18, 2017

(sqrt(185) , -(19pi)/200 )

Explanation:

Polar coordinate form is : ( r , theta )

Cartesian coordinate form ( x , y )

x = rcostheta

y =rsintheta

theta= arctan(y/x)

:.

13=rcosthetacolor(white)(88)[1]

-4=rsinthetacolor(white)(88)[2] Squaring:

169=r^2cos^2theta

16=r^2sin^2thetacolor(white)(88) adding [1] and [2]

185=r^2(sin^2theta+cos^2theta)color(white)(88888)sin^2theta+cos^2theta=1

:.

185=r^2=>r=sqrt(185)

tantheta=-4/13=>theta=tan^-1(-4/13)~~-0.2985~~-(19pi)/200

:.

(sqrt(185) , -(19pi)/200 )