What is the polar form of ( 216,-6 )?

1 Answer
Dec 21, 2017

( 6sqrt(1296) , 0.028 )

Explanation:

Using:

Cartesian ( x , y)-> Polar-> ( r , theta )

r = sqrt(x^2+y^2)

theta=arctan(y/x)

r=sqrt((216)^2+(-6)^2)=sqrt(46692)=6sqrt(1296)

theta = arctan(-6/216)=arctan(-1/36)=0.028 ( 3 .d.p)

:.

( 6sqrt(1296) , 0.028 )