What is the polar form of (5,-3)(5,3)?

1 Answer
Dec 6, 2015

r=sqrt(x^2+y^2)r=x2+y2

theta=tan^-1(y/x)θ=tan1(yx)

Explanation:

First note, the coordinate (5.-3)(5.3) is in Quadrant IV so 270< theta<360270<θ<360

r=sqrt(5^2+(-3)^2)=sqrt34r=52+(3)2=34

Reference Angle in Quad IV =tan^-1(3/5)~~31^o=tan1(35)31o

theta =(270^o)+θ=(270o)+ (reference angle) =270+31=301^o=270+31=301o

polar form =(sqrt34, 301^o)=(34,301o)

hope that helped