What is the projection of (4 i + 4 j + 2 k)(4i+4j+2k) onto (- 5 i + 4 j - 5 k)(5i+4j5k)?

1 Answer
Dec 27, 2017

The projection is =-7/33 <-5,4,-5>=733<5,4,5>

Explanation:

The vector projection of vecbb onto vecaa

proj_(veca)vecb=(veca.vecb)/(||veca||)vecaprojab=a.baa

Here,

vecb= <4,4,2>b=<4,4,2>

veca= <-5,4,-5>a=<5,4,5>

The dot product is

veca.vecb= <4,4,2>. <-5,4,-5> =(4*-5)+(4*4)+(2*-5)= -20+16-10=-14a.b=<4,4,2>.<5,4,5>=(45)+(44)+(25)=20+1610=14

The modulus of vecbb is

||veca||=sqrt((-5)^2+(4)^2+(-5)^2)=sqrt(66)a=(5)2+(4)2+(5)2=66

Therefore,

proj_(veca)vecb=(-14)/(66)*<-5,4,-5>projab=1466<5,4,5>

=-7/33<-5,4,-5>=733<5,4,5>