What is the pythagorean identity?
2 Answers
Nov 2, 2014
Pythagorean Identity
I hope that this was helpful.
Jan 8, 2016
The Pythagorean identity is:
#color(red)(sin^2x+cos^2x=1#
However, it does not have to apply to just sine and cosine.
To find the form of the Pythagorean identity with the other trigonometric identities, divide the original identity by sine and cosine.
SINE:
#(sin^2x+cos^2x=1)/sin^2x#
This gives:
#sin^2x/sin^2x+cos^2x/sin^2x=1/sin^2x#
Which equals
#color(red)(1+cot^2x=csc^2x#
To find the other identity:
COSINE:
#(sin^2x+cos^2x=1)/cos^2x#
This gives:
#sin^2x/cos^2x+cos^2x/cos^2x=1/cos^2x#
Which equals
#color(red)(tan^2x+1=sec^2x#
These identities can all be algebraically manipulated to prove many things:
#{(sin^2x=1-cos^2x),(cos^2x=1-sin^2x):}#
#{(tan^2x=sec^2x-1),(cot^2x=csc^2x-1):}#