What is the range of the function f(x)= abs(x-1) + x-1f(x)=|x1|+x1?

1 Answer
Jul 29, 2018

Range of |x-1|+x-1|x1|+x1 is [0,oo)[0,)

Explanation:

If x-1>0x1>0 then |x-1|=x-1|x1|=x1 and |x-1|+x-1=2x-2|x1|+x1=2x2

and if x-1<0x1<0 then |x-1|=-x+1|x1|=x+1 and |x-1|+x-1=0|x1|+x1=0

Hence, for values x<1x<1, |x-1|+x-1=0|x1|+x1=0 (also for x-0x0).

and for x>1x>1, we have |x-1|+x-1=2x-2|x1|+x1=2x2

and hence |x-1|+x-1|x1|+x1 takes values in the interval [0,oo)[0,) and this is the range of |x-1|+x-1|x1|+x1

graph{|x-1|+x-1 [-10, 10, -5, 5]}