What is the second derivative of x^2sinxx2sinx?

1 Answer
Apr 25, 2018

(d^2y)/(dx^2)=2sinx+4xcosx-x^2sinxd2ydx2=2sinx+4xcosxx2sinx

Explanation:

We have y=x^2sinxy=x2sinx

dy/dx=d/dx[x^2]sinx+x^2d/dx[sinx]=2xsinx+x^2cosxdydx=ddx[x2]sinx+x2ddx[sinx]=2xsinx+x2cosx

(d^2y)/(dx^2)=d/dx[2x]sinx+2xd/dx[sinx]+d/dx[x^2]cosx+x^2d/dx[cosx]=2sinx+2xcosx+2xcosx-x^2sinx=2sinx+4xcosx-x^2sinxd2ydx2=ddx[2x]sinx+2xddx[sinx]+ddx[x2]cosx+x2ddx[cosx]=2sinx+2xcosx+2xcosxx2sinx=2sinx+4xcosxx2sinx