What is the slope of r=tantheta^2-theta at theta=(3pi)/8?
1 Answer
May 11, 2017
Slope is given by
x=rcostheta y=rsintheta
And to find
dy/dx=(dy//d theta)/(dx//d theta)=(d/(d theta)(rsintheta))/(d/(d theta)(rcostheta))
Using the product rule, we can say that:
dy/dx=((dr)/(d theta)sintheta+rcostheta)/((dr)/(d theta)costheta-rsintheta)
Since
(dr)/(d theta)=2tantheta(sec^2theta)-1
So:
dy/dx=((2tanthetasec^2theta-1)sintheta+(tan^2theta-theta)costheta)/((2tanthetasec^2theta-1)costheta-(tan^2theta-theta)sin theta)
Evaluate this at