What is the square root of (x^6)/27?

1 Answer
Jul 18, 2015

sqrt((x^6)/27) = sqrt(3)/9 abs(x^3)x627=39x3

Explanation:

If a, b >= 0a,b0 then sqrt(ab) = sqrt(a)sqrt(b)ab=ab and sqrt(a/b) = sqrt(a)/sqrt(b)ab=ab

sqrt((x^6)/27) = sqrt((3x^6)/81) = (sqrt(x^6)sqrt(3))/sqrt(81) = (abs(x^3)sqrt(3))/9 = sqrt(3)/9 abs(x^3)x627=3x681=x6381=x339=39x3

Note abs(x^3)x3, not x^3x3.

If x < 0x<0 then x^3 < 0x3<0, but sqrt(x^6) > 0x6>0 since sqrt denotes the positive square root.