What is the sum of the arithmetic sequence 137, 125, 113 …, if there are 38 terms?

1 Answer

Sum =-3230=3230

Explanation:

Given first term a_1=137a1=137
common difference =-12=12

number of terms n=38n=38

compute the 38th term
a_38=a_1+(n-1)*da38=a1+(n1)d

a_38=137+(38-1)*(-12)a38=137+(381)(12)

a_38=-307a38=307

Compute sum S_38S38

S_38=n/2*(a_1+a_38)S38=n2(a1+a38)

S_38=38/2*(137+(-307))S38=382(137+(307))

S_38=-3230S38=3230

God bless...I hope the explanation is useful.