What is the the vertex of x =-1/2(y-2)^2-4y+12 ?

1 Answer
Aug 30, 2017

Vertex ->(x,y)=(12,-2)

Explanation:

color(blue)("General introduction")

Instead of a quadratic in x this is a quadratic in y

If the y^2 term is positive then the general shape is sub
If the y^2 term is negative then the general shape is sup

If you expand the brackets we end up with -1/2y^2 which is negative. So the general shape is sup
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Answering the question")

I choose to opt for the 'completed square' form of equation

Expanding the brackets we have:

x=-1/2(y^2-4y+4)-4y+12

x=-1/2y^2-2y+10

x=-1/2(y +2)^2+12" "......................Equation(1)
.........................................................
Check
x=-1/2y^2-2y-2+12" "->" "color(green)(x=-1/2y^2-2y+10)

Original eqn: x=-1/2(y-2)^2-4y+12

x=-1/2y^2+2y-2-4y+12
color(green)(x=-1/2y^2 -2y+10) color(red)(larr" Thay match")
................................................................

From Equation(1)

y_("vertex")=(-1)xx2=-2

x_("vertex")=+12

Vertex ->(x,y)=(12,-2)

Tony BTony B